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Abstract-Quasi-static neck propagation in polymers (cold drawing) is studied for the case ofplane
strain tension. For a J2-deformation theory material (nonlinear elastic), jump conditions across the
neck provide a simple steady-state solution. For a J 2-flow theory material a finite element solution
characterizes the complete development of a neck in an initially smooth specimen. The numerical
results include the overallioad-dencction curve, details ofdeformation states, and the triaxial stress
distribution. The solution algorithm is based on a convected coordinate description ofthe governing
equations (Lagrangian in character) with both Newton equilibrium iterations and a stress integration
algorithm to improve accuracy.

I.INTRODucnON

The onset of necking in a macroscopically uniform tensile specimen of a ductile material
occurs at load maximum (Prna.) and is often associated with the growth of a microscopic
imperfection. The mechanical state at maximum load is characterized by the condition that
the geometric softening due to a local reduction of cross-section is equal to the material
hardening. For many materials including most metals and ceramics the material hardening
or tangent modulus £1 =dalds is a monotonically decreasing function of strain and this
leads to localized necking with continued elongation up to fracture. A typical true stress
(o}-logarithmic strain (s) curve for these materials and a load (P)-deftection (A) curve for
a typical tensile test are depicted in Fig. 1.

Many polymers (e.g. polyethylene and polyvinyl chloride), on the other hand, display
a-e and P-A curves that are shown in Fig. 2[1]. At the onset of necking at Pmar., dalde is a
decreasing function of strain which accounts for the early stage of neck development. Once
the strain in the minimum cross-section of the neck reaches a large enough value the material
begins to stiffen with dalde increasing with increasing strain.t This tends to stabilize the
neck and with continued overall elongation the neck propagates. The sequence of events
from the onset of necking to neck propagation is depicted in Fig. 3.

Neck propagation, or commonly termed cold drawing, is a standard technique used
to orient the molecular chains of the polymer and thereby harden the polymer for products
such as fibers (axisymmetric deformation) and magnetic tape and sheet materials (plane
strain deformations). Experimental studies of cold drawing are presented by G'Sell et al. [I,
3]. Except under conditions ofvery slow neck propagation, frictional heating of the polymer
undergoing large deformations brings thermodynamic considerations into the problem.
Nevertheless, the phenomenon of neck propagation is fundamentally a mechanical one
and, therefore, the problem considered in this paper is for quasi-static deformations and
isothermal conditions.

In a recent study Hutchinson and Neale[4] consider steady-state, axisymmetric neck
propagation along circular cylindrical bars. For a nonlinear elastic solid described by J 2­

deformation theory they determine the states on both sides of the neck from the jump
conditions (across the neck) that result from conservation ofmass. momentum and energy.
An approximate solution is given for an elastic-plastic solid described 'by J2-ftOW theory
that is based upon introducing a parameterized stream function into a variational principle.

t On a molecular level the decreasing tangent modulus, E" at relatively small strains is associated with the
breaking of weak van der Waals bonds between the long entangled polymer molecules. The subsequent increase
in E, with strain results from the alignment of the molecular chains[2J,
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Fig. I. Typical uniaxial (a) true stress (u}-logarithmic strain (e) curve and (b) load (P}-elongation
(&) curve for metals.

A complete finite element solution for neck fonnation and propagation in a circular bar of
elastic-plastic material is given in a very recent paper by Neale and Tugcu[5).

In this paper neck propagation is analyzed under plane strain defonnations. For a
nonlinear elastic material described by J 2-defonnation theory, jump conditions alone pro­
vide a simple solution for the steady-state propagation load and draw ratio. The draw ratio
is defined as the ratio between the stretching in the necked-down region to the stretching
in the unnecked region. Finite element results based on a J2-flow theory elastic-plastic
material[6) display the development of the neck from an initially smooth configuration. For
the material characterization used in the analysis the strains in the necked region are on
the order of unity. The finite element algorithm incorporates a Lagrangian fonnulation of
the governing equations[7) to account for the finite changes in geometry.

2. NECK PROPAGATION IN AN INCOMPRESSIBLE, NONLINEAR ELASTIC MATERIAL

The typical shape of the true stress (O')-logarithmic strain (e) curves for polymers under
monotonic extension in simple tension is depicted in Fig. 2. The tangent modulus E1 = dO'/de
is the slope ofthis curve and it characterizes the strain hardening of the material. The initial
decrease in the tangent modulus followed by a rapid increase at strains on the order of
unity is what gives rise to stable neck propagation. The experimental results of G'Sell et
a/.[l, 3) on high density polyethylene indicate that the flow stress 0' oc exp (Me 2) at large
strains, where M is a positive constant. In this case, E, oc (2Me) exp (Me 2), which clearly
increases with strain. A complete characterization of the uniaxial stress-strain behavior that
approximates the shape of Fig. 2 is

o~ c ~ I;y,

ey ~ 6 ~ 6L'

6 ~ 6L'

(2.1)
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Fig. 2. (a) Uniaxial true stress (u}-logarithmic strain (e) curve for a polymer [from eqn (2.2)] and
(b) typical uniaxial load (P}-elongation (&) behavior for a polymer test specimen.
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Fig. 3. Sequence of deformation states depicting plane strain neck formation and propagation.

1245

Continuity ofa .md daldr. at both the yield strain, S y, and the "locking strain", S/.,' determines
four of the eight material constants a y, Sp, ty, t/." a, P, Nand M in terms of the other four
Equation (2.1) differs slightly in initial plastic response from the ones used in previous
analyses[4, 5], where here the term ep is introduced to accommodate continuity of (J and
da/de at both ey and e/.,. Throughout this paper, results will be presented for a material with
Sy = 0.05, SL = 0.4 and N = 0.2. In this case, eqn (2.1) takes the form

{

20e,
a = ay 2.51(s-0.04)0.2,

1.83 exp (0.6ge2),

o~ e ~ 0.05,

0.05 ~ e ~ 0.4,

e ~ 0.4.

(2.2)

The stress-strain curve plotted in Fig. 2 is based on eqn (2.2).
For purely elastic material behavior, an isotropic and incompressible multiaxial gener­

alization of any uniaxial a-s curve, including (2.1), is given in terms of J rdeformation
theory[4] :

(2.3)

where sij are the Cartesian components of the Cauchy stress (a) deviator

(2.4)

and sij are the Cartesian components of the logarithmic strain tensor & that has principal
values S; = In A.;, where ,1,; are the principal stretches. In uniaxial extension of a bar of initial
length Loand current length L, for example,,1, == L/Lo•The secant modulus, E.. is determined
from the uniaxial a-s curve [e.g. eqn (2.1)] at the effective stress level

(2.5)

In terms of the effective strain

(2.6)

it is straightforward to show from eqn (2.3) that E, = atltt. Under plane strain tension
(JII = (J and S)3 = 0, and it follows from eqns (2.3)-(2.6) that (Jt = (.j3/2)(J and
tt = (2/.j3)s are the effective (simple tension) measures of this state.

With E, =atltt it also is straightforward to show that eqn (2.3) with eqns (2.5) and
(2.6) is consistent with

(2.7)
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and, furthermore, that the stress is derivable from the strain energy function

(2.8)

as

(2.9)

For the study of neck propagation it is useful to plot the tensile behavior in terms of
nominal or engineering stress (n) versus stretch (A.) for a material element as shown in Fig.
4. The nominal stress is force per unit initial area, n =P/A o, and the stretch is the relative
extension of a material line element. For incompressible materials under both uniaxial and
plane strain tension, n = u/A.. With eqn (2.1) taken as the relation between the effective
true stress and the effective logarithmic strain and recalling that in plane strain tension
u. = ()3/2)u and £. = (2/)3)£, the uniaxial plane strain behavior in the direction of
stretching can be written in terms ofn and A. Figure 4 is the resulting plot with the material
properties given in eqn (2.2).

Steady, plane strain neck propagation in an elastic material can be analyzed simply in
terms ofjump conditions following the analysis ofHutchinson and Neale[4]. For sufficiently
slow deformation, dynamic effects can be neglected and the governing equations follow
from conservation of mass and energy. As depicted in Fig. 5, consider at time t a control
mass containing a fully developed neck (steady state) propagating with velocity c. The
necked end is pulled with a velocity v by the constant force PN= Pu = P* = n*h o, where
ho is the initial thickness and the corresponding axial stretches in the necked (N) and
unnecked (U) regions are denoted AN and Au. The through thickness stretches are hN/ho and
hu/ho. At an instant at later the neck has propagated a distance cat, which is also shown
in Fig. 5, and the shaded region denotes the same configuration as the shaded region shown
at time t. Conservation of mass for this control mass leads to

or

(v+c)hN= ch u (2.10)

v/c=hu/hN-I. (2.11)

Since for incompressible plane strain deformations Au(hu/ho) = AN(hN/ho) = I,
hu/hN= AN/Au so that eqn (2.11) can also be written as

nifTy
1.8

(n*lfTy)e -1.66H'--~~-"7I"
.1.6

1.4

Fig. 4. Normalized uniaxial nominal stress (n/a y) stretch (A.) curve for a polymer with a-£ behavior
described by eqn (2.2) and Fig. 2(b).



p*;V

Plane strain neck propagation
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Fig. S. Control mass, depicted at time t = to and to+~t, that illustrates conservation of mass and
energy during steady-state neck propagation [eqns (2.10) and (2.13)]. Note that the shaded regions

are identical in the two configurations.
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With dynamic and thermal effects neglected, conservation of energy for the control
mass requires that the rate of work input equals the rate of change of strain energy:

(2.13)

With p* = n*hoand Au = ho/hu, substitution ofeqns (2.10) and (2.12) into eqn (2.13) yields

(2.14)

For plane strain tensile states the strain energy density is expressible simply in terms of the
axial measures as

(2.15)

and it follows that

(2.16)

That is, for an elastic material, the difference in strain energy between two deformed states
is independent of the straining history taken between the two states. With eqn (2.16), eqn
(2.14) can be written in a form that suggests a simple graphical solution:

(2.17)

This solutionis a statement that the area under the 11 vs ;. curve (Fig. 4) between )'1' and
AN equals the rectangular area n*(AN-AU)' Equivalently, the area of the two lobes, one
above and one below n* in Fig. 4, must be equal. (In the' case of phase transformations,
the line at n* connecting states U and N is called the Maxwell line ; eqns (2.16) and (2.17)
correspond to eqns (2.2) and (2.10) in [4].) For the material properties given in eqn (2.2)
which were used to plot Fig. 4, n* = 1.66uy and AN/)'!! = 1.77. This result can be compared
with the axisymmetric result[4] that gives for the material properties of eqn (2.2),
n* = 1.33uy and AN/Au = 2.34.

3. ELASTIC-PLASTIC CONSTITUTIVE RELATIONS AND FINITE ELEMENT METHOD

In this section the finite strain elastic-plastic constitutive equations based on J rftow
theory are reviewed[6, 7]. These equations are incorporated in an incremental, tangent
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stiffness finite element algorithm[7-9]. The finite element equations are derived and certain
aspects of the solution strategy are discussed.

3.1. Finite strain, Jdial\' theory
Let x denote the current position of a material point initially at X. With the dis­

placement vector u = x - X, the deformation gradient F is defined by dx = F' dX. The rate
of stretching tensor d, which is the symmetric part of the velocity gradient, is expressed in
terms ofF as

(3.1)

where the dot over a variable denotes a derivative with respect to a time-like loading
parameter. The work-rate conjugate stress measure to d is the Kirchhoff stress t that is
related to the Cauchy stress (1 as

t = (Polp)(1, (3.2)

where PolP is the ratio of the initial and current density of a material point.
The rate form of the constitutive relation is expressed in terms of the Jaumann deriva­

tive of the Kirchhoff stress

(3.3)

which is an objective stress-rate measure. Here, t c denotes the convective derivative, i.e. the
time-like (olot) derivative of t in a material fixed coordinate system. With C denoting the
fourth-order tensor of instantaneous moduli

¥= C:d, (3.4)

where the colon denotes a dyadic product. The components of C are given with respect to
an arbitrary curvilinear coordinate system in the current configuration with covariant and
contravariant base vectors t; and t;, i = 1,3, respectively. The covariant and contravariant
components of the metric tensor in the current configuration g = gijt;tf = gijt;t" respectively,
are gij = t;· tj and g'j = 8" 81.

Hutchinson[6] introduced a finite strain generalization of the isotropic hardening, J 2­

flow theory of plasticity that expresses the contravariant components of Cas

(3.5)

where s is the Kirchhoff stress-deviator tensor:

(3.6)

The second invariant (J2) of s is the effective stress

(3.7)

The material parameters in eqn (3.5) are Young's modulus E, Poisson's ratio v and the
hardening parameter

(3.8a)
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(3.8b)

Here E, is the tangent modulus dulde at the stress level (plpo) T. of the u-e curve in uniaxial
tension. The switching parameter IX in eqn (3.5) that distinguishes plastic loading (IX = 1)
and elastic unloading (IX = 0) is defined in terms of

.-{~
if t. = (t.)max and sijdij > 0

if t. < (t.)mm or

t. = (t.)max and sijdij ~O,

(3.9)

where (t.)max is the maximum value of t. that a material point has experienced up to the
current state if yielding has occurred, otherwise (t.)m.. has the value at initial yield.

3.2. Finite element formulation
The finite element program developed for this analysis is based on a convected coor­

dinate formulation[10], where the convected coordinates ~I are particle labels. This coor­
dinate net is embedded in the initial configuration and deforms with the solid. This scheme
is Lagrangian in character and has been discussed by Hutchinson[6] and Needleman[7].

The calculation is an incremental one where each solution increment approximately
satisfies a rate form of the principle of virtual work. With body forces neglected, the
equilibrium equation expressed in terms of the nominal or first Piola-Kirchhoff stress
tensor, n(~I, t) = F- 1. t,

n~ = 0, (3.10)

where ,i denotes a/ae l
• The principle of virtual work in terms of kinematically admissible

virtual displacement ~Uj is

(3.11 )

where the nominal traction vector T = 11' D, 11 being the unit outward normal to the surface
in the reference configuration, and V and S are the volume and surface in the reference
configuration. This equation governs the displacement-based finite element calculation used
in the present work. Since it is nonlinear in displacements, a Newton iteration is used to
obtain approximate solutions. The resulting equations resemble the rate form of the prin­
ciple of virtual work, which is summarized below.

In terms of the nominal stress-rate and traction-rate, the rate form of the principle of
virtual work is[7]:

(3.12)

Needleman[7] shows that with the constitutive equation (3.4) that eqn (3.12) can be
expressed as

(3.13)
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(3.14)

Here P j are the mixed components of the deformation gradient and G is the reference
configuration metric tensor. The components of the fourth order tensor L are expressed in
terms of the incremental moduli C as[7]:

(3.15)

With the solution given at time t, eqn (3.11), with T(t+At) on the right-hand side, is
solved for u(t+At). Let d( ) denote an increment in ( ) that is calculated via a Newton
iteration, and let dn iJ = Kijkl dUI.kl where K is based on the current estimate of u. Then, a
Taylor series expansion of eqn (3.11) about the current estimate and the usual Newton
approximation yields the governing equation for the finite element calculation

iKiJkl dU'kc5u · dV = 1TJc5u dS- i niJc5u·· dV~ J.l 1 'j.l'
V S v

(3.16)

where, on the right-hand side, T is prescribed at t+At and n is based on the current estimate
for u. A nonzero contribution on the right-hand side of eqn (3.16) corrects for the lack of
equilibrium in the estimate of the solution at t+At. Since D(t) is the initial estimate used
on the right-hand side of eqn (3.16), the first iteration gives the solution of eqn (3.13) with
Au = du = uAt.

3.3. Solution algorithm
A standard displacement-based finite element discretization of eqn (3.16) yields a set

of linear simultaneous equations for the iterative solution procedure. With {U} denoting
the vector of nodal displacements, the n+ 1 approximation to {U( t+At)} is given as
{u(n)} + {du(n)}, where

(3.17)

(3.18)

Note that both the stiffness matrix [K] and the right-hand-side vector {dF} depends on the
current estimate {u(n)}. Once a convergence criterion is met, say after Niterations (n = 1, N),
then the set of nodal displacements that approximately satisfies eqn (3.11) is

U(t+At) = {U(t)}+{AU}

N

= {U(t)} + L {du(n)}.
n= I

Recall that if N = I, the d's in eqn (3.17) can be replaced by A's where the {AF} term is
the vector ofnodal force increments for the step At, and the solution {AU} is a finite element
solution to eqn (3.12) with (. ) = A( ){AI.

The convergence criterion chosen for the present work is

(3.19)

where NDF is the total number of nodal degrees of freedom. This tolerance should yield a
solution with an average of three significant digits.

A special feature of the solution algorithm for updating stresses at the spatial inte­
gration points within elements is given below. Let a given element have P degrees offreedom
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and let B be the strain-displacement matrix where
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(3.20)

The calculated nodal displacement increments together with the constitutive relation are
used to update the stresses[7]

1,+41

-rii(t+tit) = -rii(t) + I tii dt

P iU(ll+AU
=-rii(t)+ L LiiklF'!t.Bmlp dUl'"

p_1 U(I)

(3.21 )

Thc integrals in eqn (3.21) arc calculated from Euler's method with S subdivisions of tiU
~~. .

(3.22)

where the moduli, L, and the deformation gradient, F, vary with s. Alternative stress
integration schemes include the radial return algorithm[11].

In general, for computational efficiency, the number of subdivisions, S, required for
accurate spatial integration at a given point scales with the degree of nonlinearity of the
integrand in eqn (3.21). In this work S is determined from a criterion based on the finite
changes in deformation at each element integration point as described below. From the
polar decomposition theorem it is known that any deformation state, F, can be obtained
by a pure rotation, R, in series with a stretching operation, 0:

F=R·U. (3.23),

For plane problems the rotation increment, tie, which is calculated from R, and the
increment in the Mises effective-measure of the Green strain, ti'1~, which is calculated from
0, provide a two-parameter description of the deformation increment. Automatic control
of 8 during the calculation at each element integration-point is obtained through the
algori thm[9]

(3.24)

where, for some N I and N 2,

(3.25)

The allowable step size using this algorithm was carefully investigated for two test problems:
one-element plane strain tension with superimposed rotations and pure bending (25
elements).

To test the limits of the stress integration scheme the one-element calculations were
carried out using no Newton equilibrium iterations. These results lead to N I = 1500 (tie
is in radians) and N 2 = 1200 for accurate results. Therefore, 8 1 = 26 for a one degree
rotation increment and S2 = 12 for a strain increment of 0.01. After either a unit strain or
45° rotation of the one-element model, only a 21% error in the maximum stress had
accumulated. It was also observed that a fixed degree of accuracy could be achieved for a
given product of the number of load steps times the number of stress intervals, 8 [9].
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Fig. 6. Finite element mesh used to model one quadrant or the specimen (7 x 40 = 280 clements).

4. NUMERICAL RESULTS AND DISCUSSION

Based upon a finite strain version of Jrflow theory, eqn (3.5), with the uniaxial
behavior of eqn (2.2), a finite element solution is presented for a neck that develops and
propagates in an initially smooth specimen. Results presented include the overall load­
deflection curve, the draw ratio, the stress and strain in the minimum section, and the
triaxial stress distribution in the region of the neck. Some aspects of the numerical scheme
and the effect of a nonlinear elastic constitutive law on the finite element calculation also
are discussed at the end of the section.

The specimen modeled has a length to thickness ratio of 4. The mesh is depicted in
Fig. 6 and consists of 280 elements forming one quadrant of the symmetric specimen. The
elements are the superelement quadrilaterals first suggested by Nagtegaal et 0/.[12], which
consists of four constant strain triangles. A "microscopic" imperfection in the mesh is used
to initiate the neck formation. This is done by reducing the thickness of the center part of
the specimen 0.5% along one-fourth of its length. The specimen is deformed by imposing
axial displacement increments at the free end without restraining lateral movement. Thus
the loading is displacement controlled and shear free.

The finite element results show uniform deformation up to load maximum which, for
the material law chosen, is reached at an overall elongation of !l/Lo= 0.255. The devel­
opment of the neck is depicted in Fig. 7 as a series of consecutive deformation states
(deformed mesh). The corresponding position of each state on the normalized load-elong­
ation (P/Py-!l/L o) curve is indicated in Fig. 8(a), where Py is the load at initial yield. This
computed curve is in close qualitative agreement with experimental observation, e.g. Fig.
2(b). The stress and strain at the minimum sections corresponding to each state in Fig. 7
is shown in Fig. 8(b). The localization phenomenon also is illustrated in Fig. 9 through a
plot of the draw ratio (DR = AN/Au) versus overall deformation (/1/Lo), where AN and Au
are calculated as initial thickness over current thickness at the center of the neck and at the
end of the specimen, respectively (AN = ho/hN; Au = ho/hu).

Figures 8 and 9 show how both the load and draw ratio smoothly approach steady
state propagation values, which differ from the values calculated in Section 2 for an elastic
material. The effects of plasticity on the draw ratio and the propagation load, as contrasted
with the results for an elastic material, are closely linked to the detailed shape of the uniaxial
true stress-logarithmic strain curve. The difference between the elastic steady-state solution
and the one based on a J 2-flow theory constitutive relation can be seen as the net result of
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Fig. 7. Finite element results for neck formation and propagation depicted as a series ofdeformation
states (deformed mesh).
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Fig. 8. (a) Finite element results for normalized load (PIPy)-elongation (~/LO> during neck for­
mation and propagation. The labeled arrows correspond to the deformation states in Fig. 7 and (b)
position on the (T-E curve of material points at the center of the minimum section of the deformation

states in Fig. 7.
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Fig. 9. Finite element results for draw ratio (DR = A.N/A.U) as a function of elongation (/!/L o).

two competing effects. The stiffer unloading in the unnecked region during neck formation
exhibited by the flow theory material yields a higher stretch in the unnecked region
(Au- P = 1.23; Au = 1.15). This would suggest a lower draw ratio and consequently also a
lower propagation load. On the other hand, the dissipative nature of plastic work together
with a relatively stiff response of flow theories to nonproportional stressing indicates a
higher propagation load. In this study both the propagation load and the draw ratio
are lower for the elastic-plastic material, (P*jPy)'-P = 1.73; DR'-P = 1.66, compared to
(P*jP y)' = 1.75; DR' = 1.77 for corresponding elastic material. For materials with uniaxial
behavior leading to higher draw ratios the energy dissipation is likely to dominate (more
shear deformation) resulting in both higher propagation load and draw ratio for the elastic­
plastic case than for corresponding elastic case. Neale and Tugcu[5] recently presented a
finite element analysis of neck propagation in axisymmetric bars where this latter situation
occurs. For the (J-£ curve chosen in [5] the elastic draw ratio, DR" = 3.61, and propagation
load, (P*jP y)' = 1.11 is predicted in simple tension, while the finite element calculation give
DR'-P = 3.82 and (P*jPy)'-P = 1.23 for a Jrflow theory material. As a comparison this
uniaxial curve would yield DR' = 2.45 and (P*jP y)' = 1.43 for an elastic material in plane
strain tension.

For the present case the calculations were terminated at overall elongation I:J.jL o = 0.7
when the transition region reached the end of the specimen. At this stage nearly steady­
state conditions are attained, and the increase in DR and PjP y during the late part of the
calculation is small. It should be noted that truly steady-state conditions cannot be obtained
until the transition region has completely propagated away from the site of neck formation,
since the stress history during the development of the neck differs from the steady-state
history. In Fig. 10 the degree of steady state is illustrated by plotting the stresses along the
center line of the specimen for two consecutive stages of the propagation phase, I:J.jLo =0.5
and !:J.fL o = 0.7. Figure 10 also shows that the convex part of the neck profile corresponds
to compressive transverse stress, (J.w while the concave portion has tensile (J x., (G'SeJl et
a/.[3]).

In Fig. 11 the stress distribution across the minimum section is shown during the
development of the neck. At load maximum (I:J.jL o = 0.255) the uniform stress field is only
perturbed by the initial imperfection. When the neck starts to develop the stresses are
nonuniform (similar to [5]) with the highest stresses at the center of the plate and the
magnitudes decreasing toward the surface. For this calculation a uniform stress field in the
minimum section is approached at steady state. Neale and Tugcu's axisymmetric calculation
showed nonuniform stresses across the minimum section at steady state with maximum
values at the surface. It is not clear whether the difference is caused primarily by the
difference in deformation state (plane strain or simple tension) or mainly by the different
magnitude of draw ratios.

The buildup of hydrostatic tension at the minimum section during neck formation can
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Fig. 10. Stresses along the specimen center line at two deformation states, A/Lo= O.S (top) and 0.7
(bottom), that illustrates nearly steady-state conditions. Deformed meshes are positioned with

nearly identical regions juxtaposed.
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be shown by plotting a plane strain counterpart to the Bridgeman[3, 13] triaxiality factor
in uniaxial tension, Fr, versus elongation, d/L o(Fig. 12). Here Fr is taken as

(4.1)

where t 4/um is the ratio of average effective Kirchhoff stress to the average hydrostatic
tension at minimum cross-section and 1/..)3 is a normalizing constant to give FT = 1 in
uniform plane strain tension. A comparison of Figs 7, 8 and 12, shows that as the neck

4

CT.3F- -L-=-_
_________~~z

--- ....._-
---------J::~ _

2

________ CT","\

----..---
---- A/~O.32~
-4/Lo·O.7

1.0

X/hN

Fig. II. Stress distribution across the minimum section during neck formation (A{Lo = 0.325) and
during propagation (A{Lo= 0.7).
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1.00,--__

098

096

0.94

092

Fig. 12. The triaxiality factor. Fr= (I1-/3)' (frla..) at the minimum cross-section versus elongation.
I!J./Lo.

develops the triaxiality increases, which corresponds to Fr < 1. As a consequence, the
uniaxial stresses and strains in the region 0.25 < & < 0.5 of the uniaxial plot in Fig. 8(b)
are not measurable in a straightforward manner.

The finite element calculation summarized in Fig. 7 resulted from 940 displacement
increments using about 80 CPU hours and a VAX 11/780 computer. The stepsize was
manually adjusted during the computation so that no more than four equilibrium iterations
were required for a given increment. An updated stiffness matrix is used in the iteration
scheme, and the convergence criterion yields displacement increments with an average of
three significant digits. The switch parameter, 0(, in the constitutive law, eqn (3.5), is updated
only between increments. By holding 0( constant during each step the path independence of
the solution increments is kept and the use of equilibrium iterations is justified. The overall
strain increments used in the beginning of the calculation was Ae = (A(t+dt)-A(t»/Lo=
0.005. Close to load maximum this value had to be reduced to a value, Ae =0.0005, which
was kept through the remainder of the calculation.

An interesting phenomenon occurred when a finite element calculation was attempted
that used a finite strain version of J2-deformation theory without linear elastic unloading.
The calculation had to be terminated shortly after load maximum since the equilibrium
iterations failed to converge. It was observed that the (P/Py)-(AfLo) curve had turned
vertically downward (Le. dP/dA -+ - 00) and consequently, the end displacement could not
be increased. This structural instability is a result of the decrease in load after load maximum
which causes the strain in the region outside the neck to decrease while the neck is forming.
This in turn causes an overall decrease in length which is proportional to the length of the
unnecked region. The deformation theory unloads with stiffness of the current tangent
modulus which, in this case, is about an order of magnitude lower than the initial elastic
modulus used in the flow theory. Therefore, more displacement is recovered during the
unloading using the deformation theory, which leads to the instability, when at same point
the increase in length of the necking region is balanced by this recovery. The phenomenon
has previously been observed by Tvergaard et 0/.[14] in their investigation of the flow
localization in plane strain tensile tests. It should be noted that all materials that recover
strain during unloading would show this behavior for long enough specimens.
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